Underwriting and Actuarial Consultancy, Training and Research

Demystifying Basic Statistical Concepts Used In The Insurance Industry

Prepared and presented by Ana J. Mata, PhD, ACAS Managing Director and Actuary London, 2018

Copyright © 2018 by Matßlas Limited. All rights reserved

The views and opinions herein are those of the author only and do not represent the view of any professional or educational body or any organisation.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without prior written permission by MatBlas Limited.

Disclaimer: The content of this note is theoretical in nature and exclusively prepared for training purposes. It should only be used as a reference for those attending or that have attended the presentation on *Demystifying Basic Statistical Concepts Used In The Insurance Industry*. No part of the content of this course material constitutes actuarial advice for any company or organization. All worked examples shown in this note were derived from hypothetical assumptions only and do not reflect any company's rates, rating factors, benchmark factors, loss experience or reporting processes. Any similarity between these examples and any insurance company is coincidental only.

Learning Objectives

The need for a statistical and probability framework in insurance and reinsurance.

Understanding basic statistical concepts widely used in insurance pricing, reserving and capital modelling.

3 Copyright © by Matβlas. All rights reserved

Matβlas

Key Topics Covered

Probability models:

Single answer vs possible outcomes

The expected value of a random quantity

Quantifying risk

Applications to Insurance

Insurance Rating and Profitability

Statistical models are used to forecast quantities that are random (not fixed)

What are rating models in insurance forecasting in order to achieve a certain level of profit?

Premium - Claims - Expenses

What Is the Cost of an Insurance Policy?

When a policy is sold: The *Expected* Claim Cost

Matßlas

"Expected" means <u>on average in the future</u>

The average claim cost of a policy in the future year and includes

Number of events Frequency Cost of each event Severity

Even if they have not been historically observed

Events – Experience - Forecast

Data are used to fit models, models are used to forecast

Mat^βlas

Probability Models

Probability Models

Possible outcomes are random

XÇ

Possible (financial) outcomes are known (but not exact one) Each possible outcome has a probability (adds to 100%) Probability models allow us to calculate any quantity of interest

10 Copyright © by Matßlas. All rights reserved

Matβlas

Basic Example of Probability Model

Throwing a die

6 Possible Outcomes 1, 2, 3, 4, 5, 6 All outcomes have the same probability 1/6

What is the probability distribution of the random number?

Possible outcome	Probability of outcome	Probability ≤ outcome	Probability > outcome
1	1/6 = 16.66%	1/6 =16.67%	5/6 = 83.33 %
2	1/6 = 16.66%	2/6 = 33.33%	4/6 = 66.67%
3	1/6 = 16.66%	3/6 = 50.00%	3/6 = 50.00%
4	1/6 = 16.66%	4/6 = 66.67%	2/6 = 33.33%
5	1/6 = 16.66%	5/6 = 83.33%	1/6 = 16.67%
6	1/6 = 16.66%	6/6 = 100.00%	0%

Key Functions of Random Variables

Incremental: probability of taking an exact value x f(x) = Pr (Loss = x)

Cumulative probability: less than or equal to x

 $F(x) = Pr (Loss \le x)$ Probability distribution

Cumulative probability: greater than x

 $EP(x) = Pr (Loss > x) = 100\% - Pr (Loss \le x)$

Exceedance probability (use in catastrophe modelling)

Probability Functions of a Random Variable

Mat_βlas

The Expected Value Of A Random Quantity

The Average vs. The Expected Value

Throwing a die

6 Possible Outcomes 1, 2, 3, 4, 5, 6 All outcomes have the same probability 1/6

Observations:

Throw the die 12 times and the following results are observed

1, 3, 4, 1, 2, 5, 3, 1, 3, 2, 5, 5

Observed average = 2.917

But we did not observed a 6

6 is a possible outcome

The average is underestimated

Matβlas

Average vs. Weighted Average

 $Average = \frac{Sum \ all \ values}{Number \ of \ values}$

Matßlas

-

The Expected Value of a Random Quantity

Illustrative example

The expected value is the weighted average of all possible outcomes and the corresponding probabilities.

Expected value= **Sum** {possible outcome × its probability}

Across all possible loss outcomes

The expected value of the result of throwing a die

 $1 \times 1/6 + 2 \times 1/6 + 3 \times 1/6 + 4 \times 1/6 + 5 \times 1/6 + 6 \times 1/6 = 21/6 = 3.5$

Note: the average or the expected value need not be one of the possible outcomes

Probabilities And The So Called 1-in-X Years

1-in-10 years, 1-in-20 years, ... very loosely used; very misunderstood.

The most common interpretation:

An event that has a probability of happening of 1-in-X years (the return period)

Frequency of an actual event happening in a period of time.

Frequency of claims or events within a portfolio.

The probability of cost of claims exceeding a certain amount: 1-in-10 chance that aggregate claims for the year will exceed £100m.

Matßlas

Frequency Models

Frequency relates to the number of events that lead to losses/claims for a single policy or for a portfolio

Example: average frequency	is	5%
"1 in 20 years"		

On average, one such event occurs in a 20-year period; or

<u>On average</u>, on a portfolio of 20 policies, we <u>expect</u> one such claim each year

However, on any one year or policy there could be more than one such event per year (even though the probability of this is very low) The following table shows a frequency probability distribution* with average of 5%:

No. Losses	Probability	No. losses x probability
0	95.12%	0
1	4.76%	0.0476
2	0.12%	0.0024
3	0.00%	0
4	0.00%	0
5	0.00%	0
Expec	ted frequency =	0.05 (5%)

*A Poisson distribution with average of 5% has been used

Severity Models

Once an event occurs, the severity is the loss generated by the event. The following table shows an example of a severity probability distribution:

Possible loss	Probability
250,000	42%
500,000	25%
1,000,000	14%
3,000,000	16%
5,000,000	3%

62% of the time the cost of the event will be £500k or less. What is the average or expected cost per event with this probability model?

Common misconception: The **mean** or average is the mid point of the distribution: 50%-50% chance to each side.

Possible Loss	Probability	Loss x Probability	The mode is the mos likely outcome
250,000	42%	105,000	The median is the
500,000	25%	125,000	point of the distribution
1,000,000	14%	140,000	(50% probability eit side)
3,000,000	16%	480,000	Stacy
\$ @00,000	3%	60,000	_
Expected se	everity =	1,450,000	

A skewed probability distribution is NOT symmetric around the mean

Matßlas

Skewness in General Insurance

ISN'T THIS GOOD NEWS FOR (RE)INSURERS?

Matβlas

Skewness in General Insurance

Skewness is the length of the tail: how far are extreme possible outcomes

Matßlas

Skewness in General Insurance

future payments.

Mat<mark>β</mark>las

Quantifying Risk

Can You Accurately Price a Single Policy?

Illustrative example

Matßlas

1% (frequency)

Probability of a claim on any policy

£1m Policy limit

Assume every event generates a full limit claim

Expected claim cost per policy = frequency x severity = $1\% \times \pm 1M = \pm 10,000$

Premium charged = £20,000 Expected loss ratio = £10k/£20k = 50%

Claims experience will be 0 or £1m Loss ratio 0% or 5,000%

Is the price accurate?

Insurance Based on Volume and Years

Pricing is Based On

Illustrative example

Expected future average costs across policyholders and across years

Year	Premium	No. Losses	Annual Loss	Loss Ratio
1	20,000,000	11	11,000,000	55.00%
2	20,000,000	11	11,000,000	55.00%
3	20,000,000	20	20,000,000	100.00%
4	20,000,000	8	8,000,0000	40.00%
5	20,000,000	6	6,000,000	30.00%
6	20,000,000	13	13,000,000	65.00%
7	20,000,000	8	8,000,000	40.00%
8	20,000,000	5	5,000,000	25.00%
9	20,000,000	9	9,000,000	45.00%
10	20,000,000	13	13,000,000	65.00%
	10-year average LR = 52%			

Was the price accurate?

The Law of Large Numbers

- Cannot be accurately calculated
- Can be estimated (statistical models)

Actuarial methods are based on averages

Large volume of data more reliable to estimate averages

- % share of the market
- Number of years of experience

2

3

Key Functions of a Probability Distribution

Illustrative example

Mat_βlas

How are outcomes and probabilities used to measure risk?

	Possible Claim	Probability of Exact Value f(x)	Probability Less Than F(x)	Probability of Greater Than EP(x) = 100% - F(x)
	250,000	42%	42%	58%
	500,000	25%	67%	33%
	1,000,000	14%	81%	19%
Risk	3,000,000	16%	97%	3%
	5,000,000	3%	100%	0%

Percentiles of a Probability Distribution

Illustrative example

Percentiles are NOT probabilities.

Percentiles are the possible outcomes associated with cumulative probabilities.

95th percentile: 95% of the time the random value will be less than or equal to the 95th percentile.

	Possible Claim	Probability of Exact Value	Probability of less than or equal to	Probability of Greater Than
	250,000	42%	42%	58%
	500,000	25%	67%	33%
3m is the 97th percentile	1,000,000	14%	81%	19%
97% the of the time the claim will be 3m or less	3,000,000	16%	97%	3%
	5,000,000	3%	100%	0%
		The mean is the	ļ	
81 st percentile				
30 Copyright © by Matβlas. All rights reserved Ma				

The Value-at-Risk (VaR)

Illustrative example

Value-at-Risk is NOT a probability.

5% VaR is also called the 1-in-20 in the context of risk and capital

5% VaR: 5% of the time the random value will be greater than the 5% VaR (is a threshold)

	Possible Claim	Probability of Exact Value	Probability of less than or equal to	Probability of Greater Than
	250,000	42%	42%	58%
	500,000	25%	67%	33%
3m is the 3% VaR	1,000,000	14%	81%	19%
3% the of the time the claim will be greater than 3m	3,000,000	16%	97%	3%
	5,000,000	3%	100%	0%
			The mean is the	e
			19% VaR	
31 Copyright © by Matβlas. All rights reserved				Matβlas

Percentiles and Value-at-Risk

Matßlas

Probability of a claim on any policy

Policy limit

Expected claim cost per policy = $\pm 10,000$; Expected Loss Ratio = 50%

No. of claims	Prob. ≤ No. Claims (1 policy)	1 policy:
0	99%	Reserves held: £10,000
1	100%	
5		Capital to cover 1 claim = $\pm 1m - \pm 10k =$
10		£990,000
15		9,900% of reserves
20		

Probability of a claim on any policy

Policy limit

Expected claim cost per policy = $\pm 10,000$; Expected Loss Ratio = 50%

No. of claims	Prob. ≤ No. Claims (1000	1,000 policies:
	policy)	Reserves held: £10m
0	0%	Capital to cover 20 claims = £20m - £10m =
1	0%	£10m
5	6.6%	1000/ of more much
10	58.3%	100% of reserves
15	95.2%	
20	99.9%	

The Standard Deviation

Used as a unit of "distance" Always relative to the average

How many standard deviations is the 99th percentile (1in-100) from the mean? Confidence intervals around the mean:

+/- 2 standard deviations

Risk loads: a certain % of the standard deviation

A Relative Measure of Dispersion

36 Copyright © by Matβlas. All rights reserved

Mat_Blas

Skewness And The Standard Deviation Illustrative example

Average	£1,000,000				
CoV (%)	25%	100%	200%	500%	
90 th percentile (1-in-10)	1.21m	1.92m	2.70m	4.10m	
95 th percentile (1-in-20)	1.33m	2.60m	4.27m	7.90m	
99 th percentile (1-in-100)	1.57m	4.57m	10.14m	27.02m	
99.5 th percentile (1-in-200)	1.67m	5.63m	13.92m	42.39m	

Capital Requirements Under Solvency II

Include all risks: reserving, investment, credit, operational,...

Time horizon: 12 months (not 200 years!).

Risk tolerance: 1-in-200, hold risk capital to cover 99.5% of all possible outcomes. Leave only 0.5% chance of insolvency.

Capital = Reserves + Risk Capital = 99.5th percentile.

Simulate possible outcomes using statistical models (the mean and the standard deviation)

Matßlas

Sort from largest (worst case) to smallest (best case). 1-in-200 threshold: 0.5% worse simulated outcomes exceed this value.

Capital Requirements Under SII

Portfolio of motor insurance		Position highest to lowest	Annual claims (£m)	
£100m premium		1000	£819.2	
		999	£615.3	Worst 0.5%
	Worst 10	998 997	£485.2 £381.2	
Avg. annual claims £68m (68% LR)	scenarios	997 996	£361.2 £357.4	
and high volatility (>100%)		995	£330.3	1-in-200
		994	£322.8	
		993	£320.1	
()1,000 possible outcomes		992	£317.0	
		991	£312.2	
		•		Avorado
Worst 5 outcomes = 0.5%		•	•	Average 1 £68m
		10	£8.0	LOOIII
(1-in-200)		9	£7.8	
		8	£7.6	
Capital required (99.5 th)= £330.3m		7	£7.2	
	Best 10	6	£6.9	
	scenarios	5	£6.0	
Reserves held = £68m		4	£5.7	
		3	£5.3	
Risk Capital = £330.3m - £68m = 262.3	3m	2	£3.9	
		1	£3.8	

Matβlas

Diversification – Pooling Risks

Diversification occurs when independent risks

are pooled to reduce volatility around the mean Diversification **does not** reduce the expected loss cost or average.

The average increases proportionally to the number of policies 3

Diversification reduces the potential financial downside when claims are worse than expected

Reduces the risk capital relative to premium volume

 $Risk (A + B) \leq Risk (A) + Risk (B)$

99.5th percentile of (A + B) \leq 99.5th percentile of (A) + 99.5th percentile of (B)

Matßlas

Diversification and Risk Capital

Property	Casualty	Marine
Premium = 100m,	Premium = 50m,	Premium = 35m,
ULR = 65%, CoV = 150%	ULR = 75%, CoV = 70%	ULR = 70%, CoV = 60%

Class	Premium	Claims Reserves	99.5 th percentile (1-in-200)	Risk Capital	Risk Capital % Premium
Property	100m	65.0m	460.4m	395.4m	395%
Casualty	50m	37.5m	183.6m	146.1m	292%
Marine	35m	24.5m	112.8m	88.3m	252%

Combining 3 classes reduces volatility (lower 99.5th percentile) Diversification benefit = reduction in capital 215m (34%)

Summarising

The Mean

- Single point
- Need not be a possible outcome
- Used for pricing and reserving
- Across policies/ across years

The Standard Deviation

- Volatility around the mean
- All possible
 outcomes
- How far from the mean (percentiles)

Percentiles and VaR

- Not related to frequency of events
- Risk tolerance: cumulative probabilities of annual claims

Matβlas

Wrap Up: Facts to Keep in Mind

Insurance is all about statistics

- Single answer vs. possible outcomes
- The average may never happen
- The fact that something has not happened does not mean it will not happen
- Things can happen more or less frequently than observed

111

Need to Understand Models and Their Limitations

• Facts vs. assumptions vs. opinions

Underwriting Management

- Diversification is key
- Balance volume vs. profitability

Matßlas