Mat β las

Underwriting and Actuarial Consultancy, Training and Research Demystifying Basic Statistical Concepts Used In The Insurance Industry

Prepared and presented by
Ana J. Mata, PhD, ACAS Managing Director and Actuary London, 2018

Demystifying Basic Statistical Concepts Used In The Insurance Industry

Copyright © 2018 by Matßlas Limited. All rights reserved
The views and opinions herein are those of the author only and do not represent the view of any professional or educational body or any organisation.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without prior written permission by MatBlas Limited.

Disclaimer: The content of this note is theoretical in nature and exclusively prepared for training purposes. It should only be used as a reference for those attending or that have attended the presentation on Demystifying Basic Statistical Concepts Used In The Insurance Industry. No part of the content of this course material constitutes actuarial advice for any company or organization. All worked examples shown in this note were derived from hypothetical assumptions only and do not reflect any company's rates, rating factors, benchmark factors, loss experience or reporting processes. Any similarity between these examples and any insurance company is coincidental only.

Learning Objectives

Key Topics Covered

Probability models:
 Single answer vs possible outcomes

(wa)

The expected value of a random quantity

Quantifying risk

Applications to Insurance

Insurance Rating and Profitability

Statistical models are used to forecast quantities that are random (not fixed)

What are rating models in insurance forecasting in order to achieve a certain level of profit?
$=$ Premium - Claims - Expenses

What Is the Cost of an Insurance Policy?

The cost of a policy

Unknown

Covered events

Exposure

Probabilities

|.|

Risk

When a policy is sold: The Expected Claim Cost

The Expected Claim Cost

"Expected" means on average in the future

The average claim cost of a policy in the future year and includes

Number of events
Frequency

Cost of each event Severity

Even if they have not been historically observed

Events - Experience - Forecast

- Uncertain frequency and severity
- True probabilities unknown
- Events happened
- Actual claims cost generated by events

Claims experience

Data are used to fit models, models are used to forecast

 Probability Models

Probability Models

Possible outcomes are random

$$
\begin{gathered}
\text { Possible } \\
\text { (financial) } \\
\text { outcomes are } \\
\text { known (but } \\
\text { not exact one) }
\end{gathered}
$$

> Each possible outcome has a probability (adds to 100\%)

Basic Example of Probability Model

Throwing a die

6 Possible Outcomes

$$
1,2,3,4,5,6
$$

All outcomes have the same probability

1/6

What is the probability distribution of the random number?

Possible outcome	Probability of outcome	Probability \leq outcome	Probability outcome
1	$1 / 6=16.66 \%$	$1 / 6=16.67 \%$	$5 / 6=83.33 \%$
2	$1 / 6=16.66 \%$	$2 / 6=33.33 \%$	$4 / 6=66.67 \%$
3	$1 / 6=16.66 \%$	$3 / 6=50.00 \%$	$3 / 6=50.00 \%$
4	$1 / 6=16.66 \%$	$4 / 6=66.67 \%$	$2 / 6=33.33 \%$
5	$1 / 6=16.66 \%$	$5 / 6=83.33 \%$	$1 / 6=16.67 \%$
6	$1 / 6=16.66 \%$	$6 / 6=100.00 \%$	0%

Key Functions of Random Variables

Incremental: probability of taking an exact value x
$f(x)=\operatorname{Pr}($ Loss $=x)$

Cumulative probability: less than or equal to x
$\mathrm{F}(x)=\operatorname{Pr}($ Loss $\leq x)$
Probability distribution

Cumulative probability: greater than x
$E P(x)=\operatorname{Pr}($ Loss $>x)=100 \%-\operatorname{Pr}($ Loss $\leq x)$
Exceedance probability (use in catastrophe modelling)

Probability Functions of a Random Variable

Illustrative example

The Expected Value Of A Random Quantity

The Average vs. The Expected Value

Throwing a die

6 Possible Outcomes

$$
1,2,3,4,5,6
$$

Observations:

Throw the die 12 times and the following results are observed

$$
1,3,4,1,2,5,3,1,3,2,5,5
$$

$$
\text { Observed average = } 2.917
$$

All outcomes have the same probability

1/6

But we did not observed a 6

Average vs. Weighted Average

The average is simple the sum of all values divided by how many numbers are included in the sum.

$$
\text { Average }=\frac{\text { Sum all values }}{\text { Number of values }}
$$

The weighted average takes into account that each value has a different contribution (weight) to the average.

$$
\text { Wgt Average }=\frac{\text { Sum }(\text { value } \times \text { weight })}{\text { Sum }(\text { weights })}
$$

The Expected Value of a Random Quantity

The expected value is the weighted average of all possible outcomes and the corresponding probabilities.

Expected value $=$ Sum $\{$ possible outcome \times its probability\}
Across all possible loss outcomes

The expected value of the result of throwing a die

$$
1 \times 1 / 6+2 \times 1 / 6+3 \times 1 / 6+4 \times 1 / 6+5 \times 1 / 6+6 \times 1 / 6=21 / 6=3.5
$$

Note: the average or the expected value need not be one of the possible outcomes

Probabilities And The So Called 1-in-X Years

1-in-10 years, 1 -in-20 years, ... very loosely used; very misunderstood.

The most common interpretation:

An event that has a probability of happening of 1-in-X years (the return period)

Frequency of an actual event happening in a period of time.

Frequency of claims or events within a portfolio.The probability of cost of claims exceeding a certain amount: 1 -in-10 chance that aggregate claims for the year will exceed £100m.

Frequency relates to the number of events that lead to losses/claims for a single policy or for a portfolio

Example: average frequency is 5\% "1 in 20 years"

On average, one such event occurs
in a 20 -year period; or

On average, on a portfolio of 20 policies, we expect one such claim each yearHowever, on any one year or policy there could be more than one such event per year (even though the probability of this is very low)

The following table shows a frequency probability distribution* with average of 5\%:

No. Losses	Probability	No. losses x probability
0	95.12%	0
1	4.76%	0.0476
2	0.12%	0.0024
3	0.00%	0
4	0.00%	0
5	0.00%	0

$$
\text { Expected frequency }=\quad 0.05 \text { (5\%) }
$$

*A Poisson distribution with average of 5% has been used

Severity Models

Once an event occurs, the severity is the loss generated by the event. The following table shows an example of a severity probability distribution:

Possible loss	Probability
250,000	42%
500,000	25%
$1,000,000$	14%
$3,000,000$	16%
$5,000,000$	3%

62% of the time the cost of the event will be $£ 500 \mathrm{k}$ or less. What is the average or expected cost per event with this probability model?

How Often vs. How Much?

Common misconception: The mean or average is the mid point of the distribution: 50\%-50\% chance to each side.

Possible Loss	Probability	Loss x Probability	\rightarrow The mode is the most likely outcome
250,000	42\%	105,000	The median is the midpoint of the distribution (50\% probability either side)
500,000	25\%	125,000	
1,000,000	14\%	140,000	
3,000,000	16\%	480,000	
sm00,000	3\%	860,000	
Expected se	verity $=$	1,080,000	

A skewed probability distribution is NOT symmetric around the mean

Skewness in General Insurance

FACT:
Insurance rates and premiums calculated based on average costs

FACT:
Insurance claims are skewed
(Mean > Median)

THEREFORE:

We have more than 50\% chance of doing "better" than average (the mean)

ISN'T THIS GOOD NEWS FOR (RE)INSURERS?

Skewness in General Insurance

Skewness is the length of the tail: how far are extreme possible outcomes

Skewness in General Insurance

Pricing

Expected cost of claims and loss ratio target.

Reserving
Expected cost of claims set aside as a reserve: actuarial best estimate of
future payments.

Risk Capital

When claims are worse than expected; insufficient reserves (risk).

Quantifying Risk

Can You Accurately Price a Single Policy?

1\% (frequency)

Probability of a claim on any policy
£1m
Policy limit

Assume every event generates a full limit claim

Expected claim cost per policy $=$ frequency x severity $=1 \% x £ 1 \mathrm{M}=£ 10,000$

$$
\text { Premium charged }=£ 20,000 \quad \text { Expected loss ratio }=£ 10 \mathrm{k} / £ 20 \mathrm{k}=50 \%
$$

Claims experience will be 0 or $£ 1 \mathrm{~m}$

Is the price accurate?

Insurance Based on Volume and Years

Pricing is Based On

Illustrative example

Expected future average costs across policyholders and across years

Year	Premium	No. Losses	Annual Loss	
1	$20,000,000$	11	$11,000,000$	55.00%
2	$20,000,000$	11	$11,000,000$	55.00%
3	$20,000,000$	20	$20,000,000$	100.00%
4	$20,000,000$	8	$8,000,0000$	40.00%
5	$20,000,000$	6	$6,000,000$	30.00%
6	$20,000,000$	13	$13,000,000$	65.00%
7	$20,000,000$	8	$8,000,000$	40.00%
10	$20,000,000$	$5,000,000$	25.00%	

Was the price accurate?

The Law of Large Numbers

True probabilities, outcomes and mean

- Cannot be accurately calculated
- Can be estimated (statistical models)

Actuarial methods are based on averages

Large volume of data more reliable to estimate averages

- \% share of the market
- Number of years of experience

Key Functions of a Probability Distribution

How are outcomes and probabilities used to measure risk?

	Possible Claim	Probability of Exact Value $\mathrm{f}(\mathrm{x})$	Probability Less Than F(x)	Probability of Greater Than $\begin{gathered} E P(x)=100 \%- \\ F(x) \end{gathered}$
	250,000	42\%	42\%	58\%
	500,000	25\%	67\%	33\%
Risk	1,000,000	14\%	81\%	19\%
	3,000,000	16\%	97\%	3\%
	5,000,000	3\%	100\%	0\%

Percentiles of a Probability Distribution

Illustrative example
Percentiles are NOT probabilities.
Percentiles are the possible outcomes associated with cumulative probabilities.

95 ${ }^{\text {th }}$ percentile: 95% of the time the random value will be less than or equal to the $95^{\text {th }}$ percentile.

	Possible Claim	Probability of Exact Value	Probability of less than or equal to	Probability of Greater Than
	250,000	42\%	42\%	58\%
	500,000	25\%	67\%	33\%
3 m is the 97 th percentile	1,000,000	14\%	81\%	19\%
97% the of the	3,000,000	16\%	97\%	3\%
will be 3 m or less	5,000,000	3\%	100\%	0\%

The mean is the $81^{\text {st }}$ percentile

The Value-at-Risk (VaR)

Value-at-Risk is NOT a probability.
$5 \% \mathrm{VaR}$ is also called the 1 -in- 20 in the context of risk and capital
5\% VaR: 5\% of the time the random value will be greater than the 5\% VaR (is a threshold)

	Possible Claim	Probability of Exact Value	Probability of less than or equal to	Probability of Greater Than
	250,000	42\%	42\%	58\%
	500,000	25\%	67\%	33\%
$3 m$ is the 3% VaR	1,000,000	14\%	81\%	19\%
3% the of the time the claim	3,000,000	16\%	97\%	3\%
will be greater than 3 m	5,000,000	3\%	100\%	0\%

The mean is the $19 \% \mathrm{VaR}$

Percentiles and Value-at-Risk

Probability Functions

How Far From The Mean?

1\% (frequency)

Probability of a claim on any policy

£1m

Policy limit
Expected claim cost per policy $=£ 10,000$; Expected Loss Ratio $=50 \%$

No. of claims	Prob. \leq No. Claims (1 policy)
0	99%
1	100%
5	
10	
15	
20	

1 policy:
Reserves held: $£ 10,000$

Capital to cover 1 claim $=£ 1 \mathrm{~m}-£ 10 \mathrm{k}=$ £990,000

9,900\% of reserves

How Far From The Mean?

1\% (frequency)

Probability of a claim on any policy

£1m

Policy limit
Expected claim cost per policy $=£ 10,000 ;$ Expected Loss Ratio $=50 \%$

| No. of
 claims | Prob. \leq No.
 Claims (1000
 policy | 1,000 policies:
 Reserves held: $£ 10 \mathrm{~m}$
 0$\quad 0 \%$ |
| :--- | :---: | :--- | | Capital to cover 20 claims $=£ 20 \mathrm{~m}-£ 10 \mathrm{~m}=$ |
| :--- |
| 1 |

The Standard Deviation

Used as a unit of "distance"

Always relative to the average

How many standard deviations is the 99th percentile (1-in-100) from the mean?

Confidence intervals around the mean:
+/- 2 standard deviations

Risk loads: a certain \% of the standard deviation

A Relative Measure of Dispersion

The coefficient of variation (CoV) is widely used in insurance as a measure of volatility

Coefficient of Variation (CoV) $=\frac{\text { St. Deviation }}{\text { Mean }}$

Measure of "dispersion" as $a \%$ of the mean

The smaller the CoV the smaller the dispersion and vice versa

Skewness And The Standard Deviation iunstrative example

Average	$£ 1,000,000$			
CoV (\%)	25%	100%	200%	500%
90th percentile (1-in-10)	1.21 m	1.92 m	2.70 m	4.10 m
95 th $^{\text {th }}$ percentile (1-in-20)	1.33 m	2.60 m	4.27 m	7.90 m
99th percentile (1-in-100)	1.57 m	4.57 m	10.14 m	27.02 m
99.5 ${ }^{\text {th }}$ percentile (1-in-200)	1.67 m	5.63 m	13.92 m	42.39 m

Capital Requirements Under Solvency II

Include all risks: reserving, investment, credit, operational,...

Time horizon: 12 months (not 200 years!).

Risk tolerance: 1-in-200, hold risk capital to cover 99.5\% of all possible outcomes. Leave only 0.5% chance of insolvency.

Capital $=$ Reserves + Risk Capital $=99.5^{\text {th }}$ percentile.

Simulate possible outcomes using statistical models (the mean and the standard deviation)

Sort from largest (worst case) to smallest (best case). 1-in-200 threshold: 0.5% worse simulated outcomes exceed this value.

Capital Requirements Under SII

Portfolio of motor insurance
£ 100 m premium
Avg. annual claims $£ 68$ m (68% LR) and high volatility (> 100\%)

1,000 possible outcomes

Worst 5 outcomes $=0.5 \%$
(1-in-200)

Capital required $\left(99.5^{\text {th }}\right)=£ 330.3 \mathrm{~m}$
Reserves held $=£ 68 \mathrm{~m}$
Risk Capital $=£ 330.3 \mathrm{~m}-£ 68 \mathrm{~m}=262.3 \mathrm{~m}$

Worst 10 scenarios	Position highest to lowest	Annual claims (£m)	
	1000	£819.2	
	999	£615.3	
	998	£485.2	- Worst 0.5\%
	997	£381.2	
	996	£357.4	1-in-200
	995	£330.3	
	994	£322.8	
	993	£320.1	
	992	£317.0	
	991	£312.2	
	.		Average £68m
	10	£8.0	
	9	£7.8	
	8	£7.6	
	7	£7.2	
Best 10	6	£6.9	
scenarios	5	£6.0	
	4	£5.7	
	3	£5.3	
	2	£3.9	
m	1	£3.8	

Diversification - Pooling Risks

Diversification occurs when independent risks are pooled to reduce volatility around the mean

Diversification does
not reduce the
expected loss
cost or average.

The average increases proportionally to the number of policies

Diversification reduces the potential financial downside when claims are worse than expected

Reduces the risk capital relative to premium volume

```
Risk \((A+B) \leq \operatorname{Risk}(A)+\operatorname{Risk}(B)\)
\(99.5^{\text {th }}\) percentile of \((A+B) \leq 99.5^{\text {th }}\) percentile of \((A)+99.5^{\text {th }}\) percentile of \((B)\)
```


Diversification and Risk Capital

Casualty

Premium $=50 \mathrm{~m}$,
ULR $=75 \%, \mathrm{CoV}=70 \%$

Marine

Premium $=35 \mathrm{~m}$, ULR $=70 \%, C o V=60 \%$

Class	Premium	Claims Reserves	99.5 percentile $(1-i n-200)$	Risk Capital	Risk Capital $\%$ Premium
Property	100 m	65.0 m	460.4 m	395.4 m	395%
Casualty	50 m	37.5 m	183.6 m	146.1 m	292%
Marine	35 m	24.5 m	112.8 m	88.3 m	252%

Combining 3 classes reduces volatility (lower $99.5^{\text {th }}$ percentile)

Diversification benefit = reduction in capital 215 m (34\%)

Summarising

The Mean

- Single point
- Need not be a possible outcome
- Used for pricing and reserving
- Across policies/ across years

The Standard Deviation

- Volatility around the mean
- All possible outcomes
- How far from the mean
(percentiles)

Percentiles and VaR

- Not related to frequency of events
- Risk tolerance: cumulative probabilities of annual claims

Wrap Up: Facts to Keep in Mind

Insurance is all about statistics

- Single answer vs. possible outcomes
- The average may never happen
- The fact that something has not happened does not mean it will not happen
- Things can happen more or less frequently than observed

Need to Understand Models and

Their Limitations

- Facts vs. assumptions vs. opinions

Underwriting Management

- Diversification is key
- Balance volume vs. profitability

